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Network Connectivity Preserving Formation Stabilization
and Obstacle Avoidance via a Decentralized Controller

Zhen Kan, Ashwin P. Dani, John M. Shea, and Warren E. Dixon

Abstract—A decentralized control method is developed to enable a group
of agents to achieve a desired global configuration while maintaining global
network connectivity and avoiding obstacles, using only local feedback and
no radio communication between the agents for navigation. By modeling
the interaction among the agents as a graph, and given a connected initial
graph with a desired neighborhood between agents, the developed method
ensures the desired communication links remain connected for all time. To
guide the agents to a desired configuration while avoiding obstacles, a de-
centralized controller is developed based on the navigation function for-
malism. By proving that the proposed controller is a qualified navigation
function, convergence to the desired formation is guaranteed.

Index Terms— Collision avoidance, decentralized control, navigation
function, network connectivity.

I. INTRODUCTION

A wide range of applications require or can benefit from collabora-
tive motion of a group of agents. Some applications can adopt a cen-
tralized control approach where one algorithm determines and commu-
nicates the next required movement for each agent. For some applica-
tions, the centralized approach is not practical due to the potential for
compromised communication with or demise/corruption of the central
controller. Decentralized control is an alternative approach in which
each agent makes an independent decision based on either global infor-
mation communicated through the network or local information from
one-hop neighbors. Methods that use global information require each
agent to determine the relative trajectory of all other agents at all time
by propagating information through the network, resulting in delays
in the trajectory information and consumption of network bandwidth,
effects that limit the network size. Methods that use local information
need only relative trajectories of neighboring agents; however, difficul-
ties arising from achieving a desired formation for the global network
using local feedback can cause the network to partition. When the net-
work partitions, communication between groups of agents can be per-
manently severed leading to mission failure.

In this paper, a decentralized controller is developed that guarantees
that a multi-agent system can achieve an arbitrary desired configura-
tion from a connected initial graph (agents are considered as nodes on a
graph) with desired neighborhood, while avoiding collisions with other
agents and external obstacles and maintaining global network connec-
tivity. Each agent is equipped with a range sensor (e.g., camera) to pro-
vide local feedback of the relative trajectory of other agents within a
limited sensing region, and a transceiver to broadcast information to
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immediate neighbors. The developed controller can enable global net-
work coordination with radio silence.

As nodes move to achieve a desired configuration they must avoid
obstacles and remain connected. Navigation functions (a particular
class of potential functions) were originally developed in the seminal
work in [12], [16] to enable a single point-mass agent to move in
an environment with spherical obstacles. The navigation function
developed in [12] is a real-valued function that is designed so that the
negated gradient field does not have a local minima and converges to a
desired destination. The navigation function framework is extended to
multi-agent systems for obstacle avoidance in results such as [3], [5],
[8], [13]; however, agents within these results acted independently and
were not required to achieve a network objective. In contrast, results
in [1], [17], [18] use potential fields/navigation functions to achieve
obstacle avoidance while the agents are also required to achieve a
cooperative network objective (e.g., formation control or consensus);
however, these results assume the agents can always communicate
(i.e., the graph nodes are assumed to remain connected).

Results such as [2], [6], [7], [9], [10], [15], [20]–[22] are motivated
by the need to prevent the graph from partitioning. In [20] and [15],
a potential field based centralized control approach is developed
to ensure the connectivity of a group of agents using the graph
Laplacian matrix. However, global information of the underlying
graph is required to compute the graph Laplacian. In [21], connectivity
control is performed in the discrete space of graphs to verify link
deletions with respect to connectivity, and motion control is per-
formed in the continuous configuration space using a potential field.
In [22], a potential field-based neighbor control law is designed to
achieve velocity alignment and network connectivity among different
topologies. In [7] and [2], a repulsive potential is used for a collision
avoidance objective, and an attractive potential field is used to drive
agents together. Distributed control laws are investigated to ensure
edge maintenance in [10] by allowing unbounded potential force
whenever pairs of agents are about to break the existing links. In [6],
a potential field is designed for a group of mobile agents to perform
desired tasks while maintaining network connectivity. It is unclear
how the potential field method in [6] can be extended to include
static obstacles, since the resulting closed-loop dynamics can not
be expressed as a Metzler matrix with zero sums as required in the
analysis in [6]1. Moreover, the work in [6] only proves that all states
converge to a common value that can be influenced by the initial
states [14], unlike the proposed method. In comparison to the above
results, the method developed in this paper achieves convergence to a
desired configuration and maintenance of network connectivity using
a decentralized navigation function approach which uses only local
feedback information. By using a local range sensor (and not requiring
knowledge of the complete network structure as in methods that use
a graph Laplacian), an advantageous feature of the developed decen-
tralized controller is that no inter-agent communication is required
(i.e., communication free global decentralized group behavior). That
is, the goal is to maintain connectivity so that radio communication
is available when required for various task/mission scenarios, but
communication is not required to navigate, enabling stealth modes of
operation. Collision avoidance and network connectivity are embedded
as constraints in the navigation function. Compared with [6], colli-
sion avoidance with both agents and static obstacles are considered;
however, the current development is based on the assumption that
the probability of more than one simultaneous collision is negligible

1It is not clear how the method in [6] can be applied for static obstacles,
since the terms � � � � �� ���� � can not be expressed in a form such as

� �� � � � with � and � on the right side only.
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and no obstacles or agents stay within the collision region of a node
when the node is close to breaking an existing link. By proving that
the distributed control scheme is a valid navigation function, the
multi-agent system is guaranteed to converge to and stabilize at the
desired configuration.

II. PROBLEM FORMULATION

Consider a network composed of � agents in the workspace � ,
where agent � moves according to the following kinematics:

��� � ��� � � �� � � � � � (1)

where �� �
� denotes the position of agent � in a two dimensional

(2-D) plane, and �� �
� denotes the velocity of agent � (i.e., the

control input). The workspace� is assumed to be circular and bounded
with radius �, and �� denotes the boundary of � . Each agent in � is
represented by a point-mass with a limited communication and sensing
capability encoded by a disk area. It is assumed that each agent is
equipped with a range sensor and wireless communication capabilities.
Two moving agents can communicate with each other if they are within
a distance ��, while the agent can sense stationary obstacles or other
agents within a distance ��. For simplicity and without loss of gen-
erality, the following development is based on the assumption that the
sensing area coincides with the communication area, i.e., �� � ��.
Further, all agents are assumed to have equal actuation capabilities. A
set of fixed points, ��� � � � � �� , are defined to represent 	 stationary
obstacles in the workspace � , and the index set of obstacles is de-
noted as � � ��� � � � �	�. The assumption of point-obstacles is
not restrictive, since a large class of shapes can be mapped to single
points through a series of transformations [19], and this “point-world”
topology is a degenerate case of the “sphere-world” topology [16].

The interaction of the system is modeled as a graph denoted as
��
� � ��� 	�
��, where � ���� � � � � �� denotes the set of nodes,
and 	�
� � ���� �� � � 
 ����� � ��� denotes the set of time
varying edges, where node � and � are located at position �� and �� ,
and ��� � � is defined as ��� � �� � ��. In ��
�, each node
� represents an agent, and the edge ��� �� denotes a link between
agent � and � when they stay within a distance ��. Nodes � and �

are also called one-hop neighbors of each other. The set of one-hop
neighbors of node � (i.e., all the agents within the sensing zone of
agent �) is given by �� � ��� � �� ��� � �� ��� �� � 	�. One
objective in this work is to have the multi-agent system converge to
a desired configuration, determined by a formation matrix �� �

�

representing the desired relative position and orientation of node �

with an adjacent node � � � �
� , where � �

� � �� denotes the set
of nodes required to form a prespecified relative pose with node � in
the desired configuration. The neighborhood �� is a time varying set
since nodes may enter or leave the communication region of node �

at any time instant, while � �
� is a static set which is specified by the

desired configuration. The desired position of node �, denoted by ���,
is defined as ��� � ������ � �� � ��

� � �� � � � �
� �. An edge

��� �� is only established between nodes � and � if � � � �
� .

A collision region2 is defined for each agent � as a small disk with
radius �� � �� around the agent �, such that any other agent � � ��,

2The potential collision for node � in this work not only refers to the fixed
obstacles, but also other moving nodes or the workspace boundary, which are
currently located in its collision region.

or obstacle �� , � � �, inside this region is considered as a potential
collision with agent �. To ensure connectivity, an escape region for each
agent � is defined as the outer ring of the communication area with
radius �, �� � �� � � � ��, where �� � is a predetermined buffer
distance. Edges formed with any node � � � �

� in the escape region are
in danger of breaking.

The objective is to develop a decentralized controller �� that uses
relative position information from the range sensor to regulate a con-
nected initial graph to a desired configuration while maintaining net-
work connectivity and avoiding collisions with other agents and obsta-
cles in radio silence. To achieve this goal, the subsequent development
is based on the following assumptions.

Assumption 1: The initial graph � is connected within a desired
neighborhood, (i.e., the desired neighbors of an agent are initially
within the agent’s sensing zone), and those initial positions do not
coincide with some unstable equilibria (i.e., saddle points).

Assumption 2: The desired formation matrix �� is specified initially
and is achievable, which implies that the desired configuration will not
lead to a collision or a partitioned graph, (i.e., �� � �� � ��� ��).

III. CONTROL DESIGN

Consider a decentralized navigation function candidate �� � �� �
��� �	 for each node � as

�� �
��

��	� 
 ���
�
	

(2)

where � � � is a tuning parameter, �� � � � � is the goal
function, and �� � � � ��� �	 is a constraint function for node �.
The goal function �� in (2) encodes the control objective of node �,
specified in terms of the desired relative distance and orientation with
respect to the adjacent nodes �� � � �

� �, and drives the system to a
desired configuration3. The goal function is designed as

������ ��� �

���

�� � �� � ��
�
� (3)

The constraint function �� in (2) is designed as

�� � ���

���

���
��� ��

��� (4)

to ensure collision avoidance and network connectivity by only ac-
counting for nodes and obstacles located within its sensing area during
each time instant. Specifically, the constraint function in (4) is designed
to vanish whenever node � intersects with one of the constraints in the
environment, (i.e., if node � touches a fixed obstacle, the workspace
boundary, other nodes, or departs away from its adjacent nodes �� �
� �
� � to a distance of ��). In (4), ���

�
� ����� ��� � � � ��� �	 en-

sures connectivity of the network graph (i.e., guarantees that nodes
�� � � �

� � will never leave the communication zone of node � if node
� is initially connected to node �) and is designed as shown in (5), at
the bottom of the page. Also, in ���

�
� ����� ��� � � � ��� �	, for

3The formation objective � is developed based on the desire to control the
distance and relative bearings between nodes. For some applications, only
the relative distance between nodes is important, and the objective could be
rewritten as � � ��� � � � � �� �� ; however, this objective can

introduce redundant desired configurations. Future efforts could consider this
alternative objective, where an approach such as [9] may be explored to address
the multiple desired minima.

��� �

� ��� � �� � ��

� �

�
���� 
 ��� ����

� 
 �

�
���� 
 ��� ���� �� � �� � ��� � ��

� ��� � ��

(5)
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point � � �� ���, where �� indicates the set of obstacles within
the sensing area of node � at each time instant, ensures that node � is
repulsed from other nodes or obstacles to prevent a collision, and is de-
signed as

��� �
� �

�
���� �

�
�
��� ��� � ��

� ��� � ��.
(6)

Similarly, the function��� in (4) is used to model the potential collision
of node �with the workspace boundary, where the positive scalar��� �

is designed similar to��� by replacing ��� with ���, where ��� � �

is the relative distance of the node � to the workspace boundary defined
as ��� � � � ����.

Assumption 2 guarantees that 	� and 
� will not be zero simultane-
ously. The navigation function candidate achieves its minimum of 0
when 	� � � and achieves its maximum of 1 when 
� � �. For ��
to be a navigation function, it has to satisfy the following conditions
[16]: 1) smooth on � (at least a 	� function [3]); 2) admissible on � ,
(uniformly maximal on �� and constraint boundary); 3) polar on � ,
(��� is a unique minimum); 4) a Morse function, (critical points4 of
the navigation function are non-degenerate). If �� is a Morse function
and ��� is a unique minimum of �� (i.e., ��� is polar on � ), then al-
most all initial positions (except for a set of points of measure zero)
asymptotically approach the desired position ��� [16]. In addition, the
negative gradient of the navigation function is bounded if it is an ad-
missible Morse function with a single minimum at the desired destina-
tion [16].

Based on the definition of the navigation function candidate, the de-
centralized controller for each node is designed as

� � ��
� �� (7)

where� is a positive gain, and
� �� is the gradient of�� with respect
to ��. Hence, although the controller can be arbitrarily large due to 
�
being arbitrarily small, the controller in (7) is still bounded and yields
the desired performance by steering node � along the direction of the
negative gradient of �� if (2) is a navigation function.

IV. CONNECTIVITY AND CONVERGENCE ANALYSIS

The free configuration workspace �� � � is a compact connected
analytic manifold for node �, ��

�
� ��
���� � ��, and � denotes

the stacked position vector of node �. The boundary of �� is defined as
���

�
� 
��� ���. The narrow set around a potential collision for node

� is defined as ��
������

�
� ��� � ��� � �� � � �� � � �� ����,

and a narrow set around a potential connectivity constraint is defined as
��
��	���

�
� ��� � ��	 � �� � � �� � � � 


� �. The set����� � ��� �
��� � �� � � �� is used to denote a narrow set around a potential colli-
sion of node � with workspace boundary. Inspired by the seminal work
in [16],�� is partitioned into five subsets�����,�����,�����,�����,
and ������ as �� � ���������������������������, where the
set of desired configurations for node � is defined as���

�
� ��	���� �

��. The sets �����,�����,����� and ����� describe the regions near
the workspace boundary, near the potential collision constraint, near
the connectivity constraint and away from all constraints for node �,
respectively, and are defined as �����

�
� ����� � ���, �����

�
�

� ��
��� ��������� ���, �����

�
� 

	�� �
�
��	��� � ���, and �����

�
�

�� � ���� � ������ ������ ������, where ��, ��, �� � � denote
the number of nodes in the set ��, �� and � 


� , respectively. The fol-
lowing Assumptions are used to prove Proposition 6–8.

Assumption 3: No obstacles or other agents are assumed to stay
within the collision region of node �, when node � is close to breaking

4A point � in the workspace � is a critical point if � � � � �.

the communication link with a node � � � 

� (i.e., node � and node �

belong to the region ����	���).
Assumption 4: The region�������� for � � ����� is disjoint. This

assumption implies a negligible probability of more than one simulta-
neous collision with node �.

A. Connectivity Analysis

Proposition 1: If the graph � is connected initially and � � � 

� ,

then (7) ensures nodes � and � will remain connected for all time.
Proof: Consider node � located at a point �� � � that causes

	��
��	 � �. Then two possibilities are considered in the following

two cases.
Case 1: There is only one node � � � 


� for which ��	���� �	� � �

and ������� ��� �� � �� � � 

� , � �� �. The gradient of �� with respect

to �� is


� �� �
�
�
� 	� � 	�
� 
�

� �	�� � 
��
��

� (8)

Since ��	 � �, the constraint function 
� � � from (4).
Thus, the gradient 
� �� evaluated at �� can be expressed as

� ��� � ���	�
� 
�����	

���
� ��� . Based on the fact that 
�

can be expressed as the product 
� � ��	���	 , where

���	���� �	� � ���

��� �� ��	

���
��� ��

��� (9)

and 
� ��	 is computed as


� ��	�
� ��	 � �� � ���	��	 � ��,
�

��� �� �� 	�� �� 	

� �
�� � �� � ��	 � ��,

(10)

the gradient of 
� evaluated at �� can be obtained as 
� 
�� �

���
���	����������� � �	�. Since ��, 	�, �, ���	 and � are all positive
terms, (7), and 
� 
�� can be used to determine that the controller
(i.e., the negative gradient of 
� ��) is along the direction of �	 � ��,
which implies node � is forced to move toward node � to ensure con-
nectivity. Based on the design of ��	 in (5) and its gradient in (10),
whenever a node enters the escape region of node �, an attractive force
is imposed on node � to ensure connectivity.

Case 25: Consider two nodes �, � � � 

� , where ��	 � � and ��� � �

(i.e., �����	� � �� and ������� � ��) simultaneously. In this case,

� � � and 
� 
� is a zero vector, (8) can be used to determine that
�� is a critical point (i.e., 
� ��� � �), and the navigation function
achieves its maximum value at the critical point (i.e.,��� � �). Since
�� is maximized at ��, no open set of initial conditions can be attracted
to �� under the control law designed in (7).

From the development in Case 1 and Case 2, the control law in (7)
ensures that all nodes � � � 


� remain connected with node � for all
time.

B. Convergence Analysis

Proposition 2: The system in (1) converges to the largest invariant
set (i.e., the set of critical points � � ��
� ��� � ��� under the
controller in (7), provided that the tuning parameter in (2) satisfies � �
�, where � � ��� �������� ��������.

Proof: Consider a Lyapunov candidate � ��� � �

��� ��, where
� is the stacked states of all nodes, i.e., � � ���� � � � � �� �

� .
The time derivative of � is computed as �� � �
� �� �� �

5Case 2 can be extended to more than two nodes without loss of generality.
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�� �
���

�
������ ���

� ��� ���, similar to [4], which can
be further separated as

�� � ��
��� � ��

��� ���
� �

� ���

��� ���
� �� ��

��
��� � ���

��� ���
� �

� ���

��� ���
� �� �� �

When all nodes are located at the critical points, �� � �. To show that
the set of critical points are the largest invariant set, it requires that ��
is strictly negative, whenever there exists at least one node � such that
�� �� �� �. Since�� �� �� � for at least one node, �� can be rewritten
as

�� � ��
��� � ���

��� ���
� �

� ���

��� ���
� ��� ��� � (11)

To ensure that �� � � in (11), it is sufficient to require that

� ������ ���
� ��� ��� � �, which can be expanded by using (8) as

���� 	� �
�
�
�� ��

�

�	�� � ���
��

� ���

���� 	� �
�

�
�� ��

	�� � ��
��

� ��

(12)
Since 	�, �� are all positive from (3) and (4), and 	�, �� can not be
zero simultaneously from Assumption 2, the inequality in (12) is valid
provided

���� 	� �
	�


�� ��

�

� ���

���� 	� �
	�


�� �� � �

which can be simplified as
�


�
�� �

�



�� � �� � � (13)

where
�� � ������ 	��

�
� ��� 	��� ���	���� ���

�
� ��� ���� 	� ,

�� � 	���� ���
�

� ��� 	��� �� , and
�� � ����� 	��

�
� ��� ���� 	� . In (13), since �� and �� are

positive, and node � satisfies �� �� �� �, �� is positive from (3).
Using the fact that �� � �����, �� � �����, (13) can be written as
����
������ � ���
����� � ���, which suffices to show that

 � �	
� ���������� and 
 � �	
�����������. Therefore, if

 � �	
� ��������� ����������, the system converges to the set of
critical points.

Proposition 3: The navigation function is minimized at the desired
point �	�.

Proof: The navigation function �� is minimized at a critical point
if the Hessian of �� evaluated at that point is positive definite. The
gradient expression in (8) is used to determine if �	� is a critical point.
From the definition of �	� and (3), the goal function evaluated at the
desired point is 	��� � �. Also, the gradient of the goal function
evaluated at the desired point �	� is �� 	��� �

���
���	� �

�� � ���� � �. Since 	��� � � and �� 	��� � �, (8) can be
used to conclude that�� ���� � �. Thus, the desired point �	� in the
workspace 	 is a critical point of ��. The Hessian of �� is

��
� ���

�


 �	�� ����
��


 �	�� ���� 
�� ����� 	��
�

��� 	���� ���
��
���

�
� 	��	��

�
� ��

�

��



�
���� 	��	��� ��

� 
	���� �� 	���� ��
�

� (14)

Using the facts that 	��� � � and �� 	��� � � and the Hessian of
	� is

��
� 	� � ����� (15)

where �� is the identity matrix in ���, the Hessian of �� evaluated
at �	� is given by ��

� ���� � ��
���
�	
� ����. The constraint function

�� � � at the desired configuration by Assumption 2, and �� is a posi-
tive number. Hence, the Hessian of�� evaluated at that point is positive
definite.

Proposition 4: No minima of �� are on the boundary of the free
workspace 	�.

Proof: Please see proposition 3 in [11] for the proof.
Proposition 5: For every � � �, there exists a number ���� such

that if 
 � ���� no critical points of �� are in 	����.
Proof: From (8), any critical point must satisfy 
���� 	� �

	��� ��. If 
 � ����	���� ��������� 	���, where sup
is taken over 	����, then from (8), �� will have no critical
points in 	����. Since � � ��� ��� � ��� ��� in 	����,
����	������ 	��������� �������� � ����, where

���� ���
	�

��� 	��

�

���� ���

��� ��� ����

�

�

� ��

���� ���

��� ��� ����

�
� (16)

In (16), ��� ����, ��� ���� and �	������ 	���� are bounded terms
in 	���� from (3), (10) and the fact that

�� ��� �
� �

�
��� �

�
�

� ��
	

��� � ��

� ��� � ��.
(17)

Proposition 6: There exists �� � � such that if � � ��, then �� is
a Morse function.

Proof: The development in [12] and [18] proves that for �� to
be a Morse function, it is sufficient to show that ��� ���

� ���� ��� is
positive for some particular vector �� by choosing a small �, where ���
is a critical point. To show that ��� ���

� ���� ��� is positive for the unit

vector ��


� ��� � ������ � ����, (14) is used and the Hessian ��

� ��

evaluated at ��� is


��� ��
� ���� ��

�	�� � ���
� ��

� ��� 
���
�
� 	� �

�� �
�

	�

��

��� �� ��� ���
� � 	��

�
� �� ��� (18)

To facilitate the subsequent analysis, the set of critical points in 	� is
divided into sets of critical points in regions 	����,	����, and 	����.
For a case where a critical point ���  	����, using the fact that�� ��
and ��

� �� can be expressed as

�� �� ������� ��� � �����
����  (19)

��
� �� ������

�
� ��� � ����

�
�
����

� ��
�����

�
� ��� ��� ����

�
�
���� (20)

where ���� is defined in (9), and the fact that the first term on the right
hand side of (18) is always positive from (15), the subsequent expres-
sion can be obtained as


 �	�� � ���
��

��� ��
� ���� �� � 	�� (21)
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where � � �����������
�
�� � ����� � ���, with �� �

���� � �����
�����

��������� � ��� ���
�
�������, �� � ���� �

������������� ����
� and �� � ��	��� �����

�����
� ��� ���������

���� ��
� ���

� ���������
� ���

�����
�
� ��� � �� ����

�
�
�������. Since

��� � 
, a necessary condition to show that � � 
 is to prove that

���
�
�� � ����� � �� � 
 (22)

where �� � 
 if � � �. To prove the inequality in (22), the following
two cases are analyzed.
Case 1) For �� � 
, the inequality in (22) is valid if ��� � ������

��� � �������	���.
Case 2) For �� � 
, � can be rewritten as � � �� � ��������,

which is positive if ��� � ���������.
Therefore, � � 
, and from (21), ��� ���

� ���� ��� � 


for all cases if ��� is chosen as ��� � 	��
�
� ������� �

��� � �������	��
 ����������. By using the same process
of evaluating the Hessian ��

� �� at critical points belonging to
���	� and ���	�, upper bounds 	��� and 	���� for 	 can be obtained
for ��� 	 ���	� and ��� 	 ���	� respectively. By choosing
	 � 	� � ���	��
 	

��
� 
 	

���
� �, the function � is guaranteed to be

positive which implies all the critical points are non-degenerate critical
points of ��.

Proposition 7: There exists 	� � 
, such that �� has no local min-
imum in ���	�, as long as 	 � 	�.

Proof: Consider a critical point ��� 	 ���	�. Since �� is a Morse
function, then if��

� ���� has at least one negative eigenvalue,�� will
have no minimum in ���	�. To show ��

� ���� has at least one neg-

ative eigenvalue, a unit vector ��
�
� ���� ����� ����

� is defined
as a test direction to demonstrate that ��� ���

� ���� ��� � 
, where
���� denotes a vector that is perpendicular to some vector �. Using
(19) and (20), ����� ���

������� ��� ���
� ���� ��� � ����� ����,

where � � ��� ���
�����

�
� ��� � �� ����

�
�
���� � �����

�
� ������, � �

��� �������
�
� �� � ���

�
�
�������, and

��
� ��� �


 ��� 
�� � ��
or ��� � ��

��� �	 ��� �� ��� �� �

� 


�
��
 �� �	 ��


 �
�� � �� � ���

and ��� � ��.

(23)

Based on Assumption 3 and (5), (6), (10), (23), ��
���� � 
 and

��
� ��� � 
. Since the goal function �� and ���� are positive, � � 
.

To ensure ��� ���
� ���� ��� � 
, 	 must be selected as 	 � 	� where

	� � ��� ��������������.
Proposition 8: There exists 	� � 
, such that �� has no local min-

imum in ���	� and ���	�, as long as 	 � 	�.
Proof: Consider a critical point ��� 	 ���	�. Similar to the

proof for Proposition 7, the current proof is based on the fact that if
��� ���

� ���� � �� � 
 for some particular vector ��
�
� �����������

����
�, then �� will have no minimum in ���	�. To facilitate the sub-

sequent analysis, similar to the definition of ���� in (9), � can be ex-
pressed as the product � � ��

��� and ��� is defined as

������
 �� � ���

���

���
��� �� �� 		

���� (24)

Using (15), (17) and (24),
����� � ��

��������� ��� ���
� ���� � ��� �� ����� �����, where

� � ��
� ����� ������ ����	�� � �	��� � �������

�
��,

� � ��� ����
�
����� ������ �����

�
� ������ �

�������������
����

�
�
��� � ��

�
���� ��, and

��
� ���

���	����� � �	���������
���	��� � ����� � ��

� �����
�
�� �� � ��


 �� � ��

.

Since �� � ��, and ��
� ����� ������ ���� can be upper

bounded by a positive constant in ���	�, then if �� is small
enough, � is guaranteed to be negative. Hence, there exist a
positive scalar 	�� � ������, which is small enough to ensure
� � 
. To ensure ��� ���

� ���� � �� � 
, 	 must be selected as
	 � ���	��, ��� ������ ����������.

Let �� be an unit vector defined as ��
�
� ����� ������� �����

�. The
same procedure that was used to show ��� ���

� ���� � �� � 
 in���	�
can be followed to obtain another upper bound for 	, which ensures
��� ���

� ���� ��� � 
 in ���	�. By choosing 	� as the minimum of
the upper bound for 	 developed for���	� and���	�,�� is ensured to
have no minimum in ���	� and ���	� as long as 	 � 	�.

Based on Propositions 2–8, if 	 is chosen such that 	 

���	�
 	�
 	�� then the minima (a critical point) is not in ���	�,
���	�, ���	�, ���	� or the boundary of ��. Thus, the minima has to
be in �
��	� if � � �����
��	�
��. Hence, nodes starting from
any initial positions (except for the unstable equilibria) will converge
to the desired formation specified by the formation matrix ��� .

V. CONCLUSION

Given an initial graph with a desired neighborhood, a navigation
function based decentralized controller is developed to ensure the
system asymptotically converges to the desired configuration while
maintaining network connectivity and avoiding collisions with other
agents and obstacles. A distinguishing feature of the developed
approach is that the distributed agents achieve a coordinated global
configuration without requiring radio communication. Future efforts
are focused on enabling radio-silent navigation from an arbitrarily
connected distributed network. Moreover, further efforts are required
to eliminate Assumption 3 so that other obstacles or agents can be
within the collision region of node � when node � is about to break the
communication link. Likewise Assumption 4 becomes less practical
as a point grows to a sphere in the presence of uncertainty, and as the
workspace becomes more crowded. Future work is required to address
the pervasive problem of obstacle avoidance in a cluttered workspace
with uncertainty.
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Quadratic Stability for Hybrid Systems
With Nested Saturations

Mirko Fiacchini, Sophie Tarbouriech, and Christophe Prieur

Abstract—The problems of characterizing quadratic stability and com-
puting an estimation of the domain of attraction for saturated hybrid sys-
tems are addressed. Hybrid systems presenting saturations and nested sat-
urations on signals involved in both the continuous-time and the discrete-
time dynamics are considered. Geometrical characterizations of local and
global quadratic stability are provided. Computation oriented conditions
for quadratic stability are given in form of convex constraints.

Index Terms—Domain of attraction, hybrid systems, nested saturations,
stability.

I. INTRODUCTION

Hybrid systems are systems with both continuous-time and dis-
crete-time dynamics. Recently, the interest on hybrid systems has
been growing, see [4], [6], [7], [14], [19], mainly due to the increasing
application of digital devices for the control of real systems, like chem-
ical processes, communications and automotive systems. A proper
analysis and control theory has to be developed for hybrid systems. See
for instance [13], concerning the design of predictive controllers for
hybrid systems, and [16], on the use of hybrid controllers to improve
the performance.

In this paper, hybrid systems with nested saturations are handled and
both local and global stability are considered. The attention is devoted
to quadratic Lyapunov functions and ellipsoidal contractive sets, as es-
timations of the domain of attraction for hybrid systems with (nested)
saturations. Considering ellipsoids entails some conservativeness with
respect to other families of sets (as polytopes), but permits to pose
the problem in an efficiently solvable form. The issue of estimating
the domain of attraction for saturated systems, in continuous-time and
discrete-time, has been dealt with considering ellipsoids [1], [8], [11],
[12], and polytopes [2].

A first contribution of the paper is the geometrical characterization
of saturated functions. It is proved that, given a state, its image through
a saturated function is contained in a known state-dependent polytope.
The property is also proved for the case of nested saturations. Such
results permit to characterize contractiveness of ellipsoids and to de-
termine quadratic Lyapunov functions by means of convex constraints.
Some results present in literature for continuous-time, as [1], [11], and
discrete-time saturated systems, see [12], are improved or recovered as
particular cases of our approach, see also the preliminary version of the
work [5]. The results on local and global quadratic stability for hybrid
systems with simple and nested saturations are other contributions. We
also present how the lower bound on the time interval between jumps
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